Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Ticks Tick Borne Dis ; 12(3): 101685, 2021 05.
Article in English | MEDLINE | ID: mdl-33611153

ABSTRACT

Ticks are pests and vectors of diseases that are of public health and veterinary importance. The cattle tick, Rhipicephalus microplus (Canestrini, 1888), is one of the most studied tick species because of its impact on livestock health and production in the tropical and subtropical parts of the world, costing the cattle industry billions annually. Control methods have evolved throughout the years but so has R. microplus. Reliance upon chemical control has created a consistent need to develop new technologies to overcome the pesticide resistance that occurs as the ticks adapt. In order to utilize the more advanced tools such as RNAi or Crispr/Cas9 systems, tick tissues need to be isolated and manipulated. Unfortunately, there are a limited number of dissection guides available providing a detailed view of tick internal anatomy. This manual includes photomicrographs to guide the dissection of R. microplus adults, male and female. Topography and anatomical differences between the internal organs of unfed and gravid adult females are described. We were able to locate the crucial tissues for cattle tick physiology and lay out spatial and temporal guidelines for their identification and dissection. Examples of how this information can be used at the nexus between organismal and molecular research to innovate tick control technologies is discussed.


Subject(s)
Dissection/veterinary , Rhipicephalus/anatomy & histology , Tick Control , Animals , Female , Male
2.
PLoS Pathog ; 17(2): e1009270, 2021 02.
Article in English | MEDLINE | ID: mdl-33600478

ABSTRACT

Nosemosis C, a Nosema disease caused by microsporidia parasite Nosema ceranae, is a significant disease burden of the European honey bee Apis mellifera which is one of the most economically important insect pollinators. Nevertheless, there is no effective treatment currently available for Nosema disease and the disease mechanisms underlying the pathological effects of N. ceranae infection in honey bees are poorly understood. Iron is an essential nutrient for growth and survival of hosts and pathogens alike. The iron tug-of-war between host and pathogen is a central battlefield at the host-pathogen interface which determines the outcome of an infection, however, has not been explored in honey bees. To fill the gap, we conducted a study to investigate the impact of N. ceranae infection on iron homeostasis in honey bees. The expression of transferrin, an iron binding and transporting protein that is one of the key players of iron homeostasis, in response to N. ceranae infection was analysed. Furthermore, the functional roles of transferrin in iron homeostasis and honey bee host immunity were characterized using an RNA interference (RNAi)-based method. The results showed that N. ceranae infection causes iron deficiency and upregulation of the A. mellifera transferrin (AmTsf) mRNA in honey bees, implying that higher expression of AmTsf allows N. ceranae to scavenge more iron from the host for its proliferation and survival. The suppressed expression levels of AmTsf via RNAi could lead to reduced N. ceranae transcription activity, alleviated iron loss, enhanced immunity, and improved survival of the infected bees. The intriguing multifunctionality of transferrin illustrated in this study is a significant contribution to the existing body of literature concerning iron homeostasis in insects. The uncovered functional role of transferrin on iron homeostasis, pathogen growth and honey bee's ability to mount immune responses may hold the key for the development of novel strategies to treat or prevent diseases in honey bees.


Subject(s)
Bees/microbiology , Host-Pathogen Interactions , Iron/metabolism , Microsporidiosis/prevention & control , Nosema/physiology , Transferrins/metabolism , Animals , Microsporidiosis/immunology , Microsporidiosis/metabolism , Microsporidiosis/microbiology , Transferrins/genetics
3.
PLoS One ; 15(11): e0242688, 2020.
Article in English | MEDLINE | ID: mdl-33232341

ABSTRACT

The ectoparasitic mite Varroa destructor is one of the most destructive pests of the honey bee (Apis mellifera) and the primary biotic cause of colony collapse in many regions of the world. These mites inflict physical injury on their honey bee hosts from feeding on host hemolymph and fat body cells/cellular components, and serve as the vector for deadly honey bee viruses, including Deformed wing virus (DWV) and the related Varroa destructor virus-1 (VDV-1) (i.e., DWV-like viruses). Studies focused on elucidating the dynamics of Varroa-mediated vectoring and transmission of DWV-like viruses may be confounded by viruses present in ingested host tissues or the mites themselves. Here we describe a system that includes an artificial diet free of insect tissue-derived components for maintaining Varroa mites for in vitro experimentation. Using this system, together with the novel engineered cDNA clone-derived genetically tagged VDV-1 and wild-type DWV, we demonstrated for the first time that Varroa mites provided an artificial diet supplemented with engineered viruses for 36 hours could acquire and transmit sufficient numbers of virus particles to establish an infection in virus-naïve hosts. While the in vitro system described herein provides for only up to five days of mite survival, precluding study of the long-term impacts of viruses on mite health, the system allows for extensive insights into the dynamics of Varroa-mediated vectoring and transmission of honey bee viruses.


Subject(s)
Animal Diseases , Animal Feed/virology , Bees , RNA Viruses , Varroidae/virology , Virus Diseases , Animal Diseases/genetics , Animal Diseases/metabolism , Animal Diseases/transmission , Animals , Bees/metabolism , Bees/parasitology , Bees/virology , RNA Viruses/classification , RNA Viruses/genetics , RNA Viruses/metabolism , Virus Diseases/genetics , Virus Diseases/metabolism , Virus Diseases/transmission
4.
Viruses ; 12(4)2020 03 28.
Article in English | MEDLINE | ID: mdl-32231059

ABSTRACT

We developed a honey bee RNA-virus vector based on the genome of a picorna-like Deformed wing virus (DWV), the main viral pathogen of the honey bee (Apis mellifera). To test the potential of DWV to be utilized as a vector, the 717 nt sequence coding for the enhanced green fluorescent protein (eGFP), flanked by the peptides targeted by viral protease, was inserted into an infectious cDNA clone of DWV in-frame between the leader protein and the virus structural protein VP2 genes. The in vitro RNA transcripts from egfp-tagged DWV cDNA clones were infectious when injected into honey bee pupae. Stable DWV particles containing genomic RNA of the recovered DWV with egfp inserts were produced, as evidenced by cesium chloride density gradient centrifugation. These particles were infectious to honey bee pupae when injected intra-abdominally. Fluorescent microscopy showed GFP expression in the infected cells and Western blot analysis demonstrated accumulation of free eGFP rather than its fusions with DWV leader protein (LP) and/or viral protein (VP) 2. Analysis of the progeny egfp-tagged DWV showed gradual accumulation of genome deletions for egfp, providing estimates for the rate of loss of a non-essential gene an insect RNA virus genome during natural infection.


Subject(s)
Bees/virology , Genetic Engineering , Genetic Vectors/genetics , Genome, Viral , RNA Viruses/genetics , Animals , Cloning, Molecular , Fluorescent Antibody Technique , Gene Order , Genes, Reporter , Genomic Instability , Transcription, Genetic , Viral Proteins/genetics , Viral Proteins/metabolism
5.
Sci Rep ; 9(1): 12445, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31455863

ABSTRACT

Honey bees, the primary managed insect pollinator, suffer considerable losses due to Deformed wing virus (DWV), an RNA virus vectored by the mite Varroa destructor. Mite vectoring has resulted in the emergence of virulent DWV variants. The basis for such changes in DWV is poorly understood. Most importantly, it remains unclear whether replication of DWV occurs in the mite. In this study, we exposed Varroa mites to DWV type A via feeding on artificially infected honey bees. A significant, 357-fold increase in DWV load was observed in these mites after 2 days. However, after 8 additional days of passage on honey bee pupae with low viral loads, the DWV load dropped by 29-fold. This decrease significantly reduced the mites' ability to transmit DWV to honey bees. Notably, negative-strand DWV RNA, which could indicate viral replication, was detected only in mites collected from pupae with high DWV levels but not in the passaged mites. We also found that Varroa mites contain honey bee mRNAs, consistent with the acquisition of honey bee cells which would additionally contain DWV replication complexes with negative-strand DWV RNA. We propose that transmission of DWV type A by Varroa mites occurs in a non-propagative manner.


Subject(s)
Arthropod Vectors/virology , Bees , RNA Viruses/metabolism , Varroidae/virology , Animals , Bees/parasitology , Bees/virology
6.
J Exp Biol ; 222(Pt 7)2019 04 05.
Article in English | MEDLINE | ID: mdl-30846535

ABSTRACT

Nutrition is involved in regulating multiple aspects of honey bee biology such as caste, immunity, lifespan, growth and behavioral development. Deformed wing virus (DWV) is a major pathogenic factor which threatens honey bee populations, and its replication is regulated by the nutrition status and immune response of honey bees. The alimentary canal of the honey bee is home to a diverse microbial community that provides essential nutrients and serves to bolster immune responses. However, to what extent gut bacteria affect honey bee nutrition metabolism and immunity with respect to DWV has not been investigated fully. In this study, newly emerged worker bees were subjected to four diets that contained (1) pollen, (2) pollen and antibiotics, (3) neither pollen nor antibiotics or (4) antibiotics alone. The expression level of two nutrition genes target of rapamycin (tor) and insulin like peptide (ilp1), one nutritional marker gene vitellogenin (vg), five major royal jellyprotein genes (mrjp1-5), one antimicrobial peptide regulating gene relish (rel), and DWV virus titer and its replication intermediate, negative RNA strand, were determined by qRT-PCR from the honey bees at 7 days post-antibiotic treatment. Additionally, honey bee head mass and survival rate were measured. We observed that antibiotics decreased the expression of tor and rel, and increased DWV titer and its replication activity. Expression of ilp1, mrjp1-5 and vg, and honey bee head mass were also reduced compared with bees on a pollen diet. Antibiotics also caused a significant drop in survivorship, which could be rescued by addition of pollen to the diet. Of importance, pollen could partially rescue the loss of vg and mrjp2 while also increasing the head mass of antibiotic-treated bees. Our results illuminate the roles of bacteria in honey bee nutrition, metabolism and immunity, which confer the ability to inhibit virus replication, extend honey bee lifespan and improve overall health.


Subject(s)
Bacteria/isolation & purification , Bees/immunology , Bees/microbiology , Pollen , Animal Nutritional Physiological Phenomena , Animals , Anti-Bacterial Agents/administration & dosage , Bacteria/classification , Bacteria/drug effects , Bees/virology , Diet , Female , Gastrointestinal Microbiome/drug effects , Gene Expression , Head/anatomy & histology , Penicillins/administration & dosage , RNA Viruses/growth & development , Streptomycin/administration & dosage
7.
J Exp Biol ; 221(Pt 19)2018 10 05.
Article in English | MEDLINE | ID: mdl-30135088

ABSTRACT

RNA interference (RNAi) is a post-transcriptional gene silencing mechanism triggered by double-stranded RNA (dsRNA) that is homologous in sequence to the silenced gene and is conserved in a wide range of eukaryotic organisms. The RNAi mechanism has provided unique opportunities for combating honey bee diseases caused by various parasites and pathogens. Nosema ceranae is a microsporidian parasite of European honey bees, Apis mellifera, and has been associated with honey bee colony losses in some regions of the world. Here we explored the possibility of silencing the expression of a N. ceranae putative virulence factor encoding polar tube protein 3 (ptp3) which is involved in host cell invasion as a therapeutic strategy for controlling Nosema parasites in honey bees. Our studies showed that the oral ingestion of a dsRNA corresponding to the sequences of N. ceranae ptp3 could effectively suppress the expression of the ptp3 gene in N. ceranae-infected bees and reduce Nosema load. In addition to the knockdown of ptp3 gene expression, ingestion of ptp3-dsRNA also led to improved innate immunity in bees infected with N. ceranae along with an improvement in physiological performance and lifespan compared with untreated control bees. These results strongly suggest that RNAi-based therapeutics hold real promise for the effective treatment of honey bee diseases in the future, and warrant further investigation.


Subject(s)
Bees/immunology , Nosema/physiology , Protozoan Proteins/genetics , RNA Interference , Animals , Beekeeping , Bees/parasitology , Immunity, Innate , Nosema/genetics , Protozoan Proteins/metabolism , RNA, Double-Stranded/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...